首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6807篇
  免费   706篇
  国内免费   3篇
  2023年   26篇
  2022年   27篇
  2021年   175篇
  2020年   85篇
  2019年   125篇
  2018年   155篇
  2017年   137篇
  2016年   206篇
  2015年   366篇
  2014年   380篇
  2013年   469篇
  2012年   635篇
  2011年   612篇
  2010年   397篇
  2009年   393篇
  2008年   466篇
  2007年   479篇
  2006年   431篇
  2005年   386篇
  2004年   401篇
  2003年   312篇
  2002年   289篇
  2001年   51篇
  2000年   32篇
  1999年   52篇
  1998年   71篇
  1997年   42篇
  1996年   27篇
  1995年   26篇
  1994年   27篇
  1993年   22篇
  1992年   17篇
  1991年   10篇
  1990年   15篇
  1989年   20篇
  1988年   12篇
  1987年   14篇
  1986年   13篇
  1985年   12篇
  1984年   13篇
  1983年   12篇
  1982年   13篇
  1981年   12篇
  1980年   4篇
  1979年   4篇
  1977年   6篇
  1975年   2篇
  1974年   11篇
  1973年   4篇
  1967年   3篇
排序方式: 共有7516条查询结果,搜索用时 265 毫秒
81.
Background aimsCorneal inflammation after alkali burns often results in vision loss due to corneal opacification and neovascularization. Mesenchymal stem cells (MSCs) and their secreted factors (secretome) have been studied for their anti-inflammatory and anti-angiogenic properties with encouraging results. However, topical instillation of MSCs or their secretome is often accompanied by issues related to delivery or rapid washout. Polyethylene glycol (PEG) and collagen are well-known biomaterials used extensively in scaffolds for tissue engineering. To effectively suppress alkaline burn-induced corneal injury, the authors proposed encapsulating MSCs within collagen gels cross-linked with multi-functional PEG-succinimidyl esters as a means to deliver the secretome of immobilized MSCs.MethodsHuman MSCs were added to a neutralized collagen solution and mixed with a solution of four-arm PEG-N-hydroxysuccinimide. An ex vivo organ culture was conducted using rabbit corneas injured by alkali burn. MSCs were encapsulated within PEG-collagen hydrogels and injected onto the wounded cornea immediately following alkali burn and washing. Photographs of the ocular surface were taken over a period of 7 days after the alkali burn and processed for immunohistochemical evaluation. Samples were split into three groups: injury without treatment, MSCs alone, and MSCs encapsulated within PEG-collagen hydrogels.ResultsAll corneas in ex vivo organ culture lost their transparency immediately after alkali burn, and only the groups treated with MSCs and MSCs encapsulated within PEG-collagen hydrogels recovered some transparency after 7 days. Immunohistochemical analysis revealed increased expression of vimentin in the anterior corneal stroma of the group without treatment indicative of fibrotic healing, whereas less stromal vimentin was detected in the group containing MSCs encapsulated within the PEG-collagen hydrogels.ConclusionsPEG-collagen hydrogels enable the encapsulation of viable MSCs capable of releasing secreted factors onto the ocular surface. Encapsulating MSCs within PEG-collagen hydrogels may be a promising method for delivering their therapeutic benefits in cases of ocular inflammatory diseases, such as alkali burn injuries.  相似文献   
82.
83.
Mammary tumorigenesis and epithelial–mesenchymal transition (EMT) programs cooperate in converting transforming growth factor-β (TGF-β) from a suppressor to a promoter of breast cancer metastasis. Although previous reports associated β1 and β3 integrins with TGF-β stimulation of EMT and metastasis, the functional interplay and plasticity exhibited by these adhesion molecules in shaping the oncogenic activities of TGF-β remain unknown. We demonstrate that inactivation of β1 integrin impairs TGF-β from stimulating the motility of normal and malignant mammary epithelial cells (MECs) and elicits robust compensatory expression of β3 integrin solely in malignant MECs, but not in their normal counterparts. Compensatory β3 integrin expression also 1) enhances the growth of malignant MECs in rigid and compliant three-dimensional organotypic cultures and 2) restores the induction of the EMT phenotypes by TGF-β. Of importance, compensatory expression of β3 integrin rescues the growth and pulmonary metastasis of β1 integrin–deficient 4T1 tumors in mice, a process that is prevented by genetic depletion or functional inactivation of β3 integrin. Collectively our findings demonstrate that inactivation of β1 integrin elicits metastatic progression via a β3 integrin–specific mechanism, indicating that dual β1 and β3 integrin targeting is necessary to alleviate metastatic disease in breast cancer patients.  相似文献   
84.
ABSTRACT

This article is a review and thematic analysis of the 2014 National Core Arts Standards (NCAS). Historically, there exists a gap between the arts and assessment-based educational practices. Thematic analysis of the NCAS reveals a policy striving to bridge the gap between the way arts educators envision arts in schools, and the current reality of assessment-based schooling in the United States. This policy could become the foundation for the recognition of the arts as academically rigorous subject matter, capable of existing and thriving in an assessment-oriented world; it remains to be seen as to how and if arts educators will use and adapt NCAS. Is the NCAS merely a symbolic policy or does it have the support behind it to be a material policy that truly creates change in the educational system?  相似文献   
85.
Drawing from social contract theory, we explore how some adolescent Arab immigrants' (n = 99) sensitivity to the image of their ethnic group as enemies of America colors their interpretation of the social contract. Analyses of data collected in 1997 reveal that those youth who reported that the American media portray Arab people and nations as enemies of the United States are more attuned to personal experiences of prejudice based on their ethnic identity and are more dubious that the tenets of the social contract apply equally across groups. Negative images of Arab Americans were well in place prior to September 11, 2001, a pivotal moment that altered the lives of Arab Americans as well as the discourse on immigration and citizenship.  相似文献   
86.
In arid and semi-arid regions of the world, such as Mongolia, the future of water resources under a warming climate is of particular concern. The influence of increasing temperatures on precipitation is difficult to predict because precipitation trends in coming decades could have a high degree of spatial variability. In this study, we applied a rotated principal component analysis (RPCA) to a network of 20 tree-ring chronologies across central Mongolia from 1790 to 1994 to evaluate spatial hydroclimatic variability and to place recent variability in the context of the past several centuries. The RPCA results indicate that the network consists of four tree-growth anomaly regions, which were found to be relatively stable through time and space. Correlation analyses reveal spatial linkages between the tree-growth anomalies and instrumental data, where annual streamflow variability was strongly associated with tree-growth anomalies from their respective regions from 1959 to 1994 (r = 0.52–0.64, p < 0.05). This study highlights the extent of spatial variability in hydroclimate across central Mongolia and emphasizes the value of using tree-ring networks in locations with limited instrumental records.  相似文献   
87.
The nucleoside analogs 5-azacytidine (azacitidine) and 5-aza-2′-deoxycytidine (decitabine) are active against acute myeloid leukemia and myelodysplastic syndromes. Cellular transport across membranes is crucial for uptake of these highly polar hydrophilic molecules. We assessed the ability of azacitidine, decitabine, and, for comparison, gemcitabine, to interact with human nucleoside transporters (hNTs) in Saccharomyces cerevisiae cells (hENT1/2, hCNT1/2/3) or Xenopus laevis oocytes (hENT3/4). All three drugs inhibited hCNT1/3 potently (K i values, 3–26 μM), hENT1/2 and hCNT2 weakly (K i values, 0.5–3.1 mM), and hENT3/4 poorly if at all. Rates of transport of [3H]gemcitabine, [14C]azacitidine, and [3H]decitabine observed in Xenopus oocytes expressing individual recombinant hNTs differed substantially. Cytotoxicity of azacitidine and decitabine was assessed in hNT-expressing or hNT-deficient cultured human cell lines in the absence or presence of transport inhibitors where available. The rank order of cytotoxic sensitivities (IC 50 values, μM) conferred by hNTs were hCNT1 (0.1) > hENT1 (0.3) ? hCNT2 (8.3), hENT2 (9.0) for azacitidine and hENT1 (0.3) > hCNT1 (0.8) ? hENT2, hCNT2 (>100) for decitabine. Protection against cytotoxicity was observed for both drugs in the presence of inhibitors of nucleoside transport, thus suggesting the importance of hNTs in manifestation of toxicity. In summary, all seven hNTs transported azacitidine, with hCNT3 showing the highest rates, whereas hENT1 and hENT2 showed modest transport and hCNT1 and hCNT3 poor transport of decitabine. Our results show for the first time that azacitidine and decitabine exhibit different human nucleoside transportability profiles and their cytotoxicities are dependent on the presence of hNTs, which could serve as potential biomarkers of clinical response.  相似文献   
88.
The distribution of circulating lipoprotein particles affects the risk for cardiovascular disease (CVD) in humans. Lipoproteins are historically defined by their density, with low-density lipoproteins positively and high-density lipoproteins (HDLs) negatively associated with CVD risk in large populations. However, these broad definitions tend to obscure the remarkable heterogeneity within each class. Evidence indicates that each class is composed of physically (size, density, charge) and compositionally (protein and lipid) distinct subclasses exhibiting unique functionalities and differing effects on disease. HDLs in particular contain upward of 85 proteins of widely varying function that are differentially distributed across a broad range of particle diameters. We hypothesized that the plasma lipoproteins, particularly HDL, represent a continuum of phospholipid platforms that facilitate specific protein–protein interactions. To test this idea, we separated normal human plasma using three techniques that exploit different lipoprotein physicochemical properties (gel filtration chromatography, ionic exchange chromatography, and preparative isoelectric focusing). We then tracked the co-separation of 76 lipid-associated proteins via mass spectrometry and applied a summed correlation analysis to identify protein pairs that may co-reside on individual lipoproteins. The analysis produced 2701 pairing scores, with the top hits representing previously known protein–protein interactions as well as numerous unknown pairings. A network analysis revealed clusters of proteins with related functions, particularly lipid transport and complement regulation. The specific co-separation of protein pairs or clusters suggests the existence of stable lipoprotein subspecies that may carry out distinct functions. Further characterization of the composition and function of these subspecies may point to better targeted therapeutics aimed at CVD or other diseases.Lipoproteins are circulating emulsions of protein and lipid that play important roles, both positive and negative, in cardiovascular disease (CVD).1 Historically defined by their density as separated by ultracentrifugation, the major lipoprotein classes include the neutral lipid ester-rich very low-density and low-density lipoproteins (VLDLs and LDLs, respectively), which function to transport triglyceride and cholesterol from the liver to the peripheral tissues. Significant epidemiological evidence, in vitro studies, animal experiments, and human clinical trials have shown that high-LDL cholesterol is a bona fide causative factor in CVD (1). In contrast, protein- and phospholipid-rich high-density lipoproteins (HDLs) are thought to mediate the reverse transport of cholesterol from the periphery to the liver for catabolism and to perform anti-oxidative and anti-inflammatory functions (reviewed in Refs. 2 and 3). A host of human epidemiology and animal studies indicate that HDLs are atheroprotective (4). However, recent clinical trials of therapeutics that generically raise HDL, at least as measured by its cholesterol levels, have failed to confer the expected CVD protections (57).Although these traditional density-centric definitions have been used for nearly 40 years, accumulating evidence indicates that they are not particularly reflective of lipoprotein compositional and functional complexity. With respect to most physical traits (size, charge, lipid content, protein content, etc.), one can demonstrate significant heterogeneity within each density class. This suggests that particle subspecies exist with unique functions and effects on disease. For example, LDL can be resolved into large, buoyant and small, dense forms (8), with subjects carrying more cholesterol in the small, dense LDL exhibiting a greater CVD risk (9). HDL is particularly noted for heterogeneity, as it can be separated into numerous subfractions by density (10), diameter (11), charge (12), and major apolipoprotein content (13). Most strikingly, recent applications of soft-ionization mass spectrometry (MS) have identified upward of 85 HDL proteins with functions that go well beyond the structural apolipoproteins, lipid transport proteins, and lipid-modifying enzymes known from previous biochemical studies (14, 15). Many of these proteins imply functions as diverse as complement regulation, acute phase response, protease inhibition, and innate immunity (16). Individual HDL subspecies can apparently draw from this palette of proteins to produce distinct particles of distinct function. One well-defined HDL subfraction, termed trypanosome lytic factor, contains apolipoprotein apoA-I, haptoglobin-related protein, and apoL-I. Working together, these proteins enter the trypanosome brucei brucei and kill it via lysosomal disruption (17). There are numerous other instances of on-particle protein cooperation in HDL related to CVD (reviewed in Ref. 15). Furthermore, two-dimensional electrophoresis studies by Asztalos and colleagues (18), as well as our own work (11, 19), strongly support the concept that certain apolipoproteins segregate among different HDL particles. These observations present the intriguing possibility that the phospholipids of HDLs act as an organizing platform that facilitates the assembly of specific protein complexes (20). Such subspecies could have important functional implications in the context of CVD protection, inflammation, or even innate immune function. Furthermore, this subspeciation may explain why therapeutics that raise HDL cholesterol levels across the board have not yet shown promise with regard to CVD.To address this hypothesis, we began to think of lipoproteins as a continuum of phospholipid platforms that support the assembly of specific protein complexes analogous to those in cells that perform coordinated biological functions (i.e. ribosomes, centrosomes, etc.). Two common methods for characterizing protein complexes are tandem affinity purification (21) and immunoprecipitation. Both rely on the specific pull-down of a target protein (by either an introduced affinity tag or an antibody) followed by the identification of co-precipitated proteins via MS. Unfortunately, tandem affinity purification strategies are impractical in humans, and we have found that immunoprecipitation experiments with human plasma lipoproteins result in a high false-positive rate due to the low abundance of most of these proteins, particularly those in HDLs. Therefore, we took an alternative approach called co-separation analysis, a method based on the principle that stable protein complexes can be identified by tracking their co-migration as they undergo biochemical separation by multiple orthogonal approaches (22). Native proteins are analyzed in an unbiased manner without affinity tags or antibodies, and purification to homogeneity is not necessary for the identification of putative protein complexes.Most current studies of the lipoprotein proteome utilize samples isolated via density ultracentrifugation because contaminating lipid-unassociated lipoproteins, which can be highly abundant and obscure the identification of targeted lipid-associated proteins, are thus removed prior to the analysis. In previous work, we characterized the use of a calcium silica hydrate (CSH) resin that allowed the specific isolation of phospholipid-associated proteins and their subsequent MS identification without ultracentrifugation (11). This advance enabled the use of a variety of non-density-based separation methods for the study of plasma lipoproteins. Here, we take advantage of this to analyze the proteome of human plasma lipoproteins separated via three separation techniques that exploit different physicochemical properties: (i) gel filtration chromatography (size), (ii) anion exchange chromatography (charge interaction), and (iii) isoelectric focusing. By tracking the co-migration of specific proteins across these separations (Fig. 1), we identified a host of putative protein pairings, including the previously known trypanosome lytic factor HDL fraction, for further biochemical verification and characterization.Open in a separate windowFig. 1.Overview of the multi-dimensional separation co-migration analysis used in this study (see “Experimental Procedures” for details).  相似文献   
89.
Variation in species’ responses to abiotic phenological cues under climate change may cause changes in temporal overlap among interacting taxa, with potential demographic consequences. Here, we examine associations between the abiotic environment and plant–pollinator phenological synchrony using a long‐term syrphid fly–flowering phenology dataset (1992–2011). Degree‐days above freezing, precipitation, and timing of snow melt were investigated as predictors of phenology. Syrphids generally emerge after flowering onset and end their activity before the end of flowering. Neither flowering nor syrphid phenology has changed significantly over our 20‐year record, consistent with a lack of directional change in climate variables over the same time frame. Instead we document interannual variability in the abiotic environment and phenology. Timing of snow melt was the best predictor of flowering onset and syrphid emergence. Snow melt and degree‐days were the best predictors of the end of flowering, whereas degree‐days and precipitation best predicted the end of the syrphid period. Flowering advanced at a faster rate than syrphids in response to both advancing snow melt and increasing temperature. Different rates of phenological advancements resulted in more days of temporal overlap between the flower–syrphid community in years of early snow melt because of extended activity periods. Phenological synchrony at the community level is therefore likely to be maintained for some time, even under advancing snow melt conditions that are evident over longer term records at our site. These results show that interacting taxa may respond to different phenological cues and to the same cues at different rates but still maintain phenological synchrony over a range of abiotic conditions. However, our results also indicate that some individual plant species may overlap with the syrphid community for fewer days under continued climate change. This highlights the role of interannual variation in these flower–syrphid interactions and shows that species‐level responses can differ from community‐level responses in nonintuitive ways.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号